Advertisements
Advertisements
Question
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Solution
We have to simplify the following, assuming that x, y, z are positive real numbers
Given `(sqrt2/sqrt3)^5(6/7)^2`
`=(sqrt2/sqrt3)^(2+2+1)(6/7)^2`
`=(sqrt2/sqrt3)^2xx(sqrt2/sqrt3)^2xx(sqrt2/sqrt3)^1xx(6/7)^2`
`=(2/3)xx(2/3)xx(sqrt2/sqrt3)^1xx(6/7)^2`
`=(16sqrt2)/(49sqrt3)`
`=sqrt(512/7203)`
`=(512/7203)^(1/2)`
APPEARS IN
RELATED QUESTIONS
If a = 3 and b = -2, find the values of :
ab + ba
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
Find the value of x in the following:
`(3/5)^x(5/3)^(2x)=125/27`
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
State the quotient law of exponents.
The value of x − yx-y when x = 2 and y = −2 is
If 9x+2 = 240 + 9x, then x =