English

State the Quotient Law of Exponents. - Mathematics

Advertisements
Advertisements

Question

State the quotient law of exponents.

Answer in Brief

Solution

The quotient rule tells us that we can divide two powers with the same base by subtracting the exponents. If a is a non-zero real number and m, n are positive integers, then  `a^m/a^n = a^(m-n)`

We shall divide the proof into three parts 

(i) when  m>n

(ii) when  m  = n 

(iii) when  m < n

Case 1 

When   m > n

We have 

\[\frac{a^m}{a^n} = \frac{a \times a \times a . . . .\text {  to m factors }}{a \times a \times a . . . . \text { to n factors }}\]

\[\frac{a^m}{a^n} = a \times a \times a . . . . to (m - n) \text { factors }\]

\[\frac{a^m}{a^n} = a^{m - n}\]

Case 2 

When  m = n

We get

 `a^m/a^n = a^m/a^m`

Cancelling common factors in numerator and denominator we get,

`a^m/a^n = 1`

By definition we can write 1 as a°

 `a^m/a^n = a^(m-m)`

 `a^m/a^n = a^(m-n)`

Case 3 

When  m < n

In this case, we have 

`a^m/a^n = 1/(axx axx a ....(n-m))`

`a^m/a^n = 1/(a^(n-m))`

`a^m/a^n = a^-(n-m)`

`a^m/a^n = a^(m-n)`

Hence `a^m/a^n = a^(m-n)`, whether m < n, m = n or,m > n

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Exponents of Real Numbers - Exercise 2.3 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 2 Exponents of Real Numbers
Exercise 2.3 | Q 3 | Page 28

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×