Advertisements
Advertisements
Question
State the quotient law of exponents.
Solution
The quotient rule tells us that we can divide two powers with the same base by subtracting the exponents. If a is a non-zero real number and m, n are positive integers, then `a^m/a^n = a^(m-n)`
We shall divide the proof into three parts
(i) when m>n
(ii) when m = n
(iii) when m < n
Case 1
When m > n
We have
\[\frac{a^m}{a^n} = \frac{a \times a \times a . . . .\text { to m factors }}{a \times a \times a . . . . \text { to n factors }}\]
\[\frac{a^m}{a^n} = a \times a \times a . . . . to (m - n) \text { factors }\]
\[\frac{a^m}{a^n} = a^{m - n}\]
Case 2
When m = n
We get
`a^m/a^n = a^m/a^m`
Cancelling common factors in numerator and denominator we get,
`a^m/a^n = 1`
By definition we can write 1 as a°
`a^m/a^n = a^(m-m)`
`a^m/a^n = a^(m-n)`
Case 3
When m < n
In this case, we have
`a^m/a^n = 1/(axx axx a ....(n-m))`
`a^m/a^n = 1/(a^(n-m))`
`a^m/a^n = a^-(n-m)`
`a^m/a^n = a^(m-n)`
Hence `a^m/a^n = a^(m-n)`, whether m < n, m = n or,m > n
APPEARS IN
RELATED QUESTIONS
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
If x is a positive real number and x2 = 2, then x3 =
The simplest rationalising factor of \[\sqrt[3]{500}\] is
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
Find:-
`125^(1/3)`