Advertisements
Advertisements
Question
If x is a positive real number and x2 = 2, then x3 =
Options
\[\sqrt{2}\]
2\[\sqrt{2}\]
3\[\sqrt{2}\]
4
Solution
We have to find `x^3`provided `x^2 = 2`. So,
By raising both sides to the power `1/2`
`x^(2 xx 1/2) = 2^(1/2)`
`x^(2 xx 1/2) = sqrt2`
`x= sqrt2`
By substituting `x= sqrt2` in `x^2` we get
`x^2 = (sqrt2)^3`
= `sqrt2 xx sqrt2 xxsqrt2`
= `2sqrt2`
The value of `x^2`is `2sqrt2`
APPEARS IN
RELATED QUESTIONS
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
Write the value of \[\sqrt[3]{125 \times 27}\].
(256)0.16 × (256)0.09
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
Simplify:
`7^(1/2) . 8^(1/2)`