Advertisements
Advertisements
Question
If 9x+2 = 240 + 9x, then x =
Options
0.5
0.2
0.4
0.1
Solution
We have to find the value of x
Given `9 ^(x+2) = 240 +9^x`
`9^x xx 9^2 = 240 +9^x`
`9^2 = 240/9^x + 9^x/9^x`
`81= 240/9^x+ 1`
`81- 1= 240/9^x`
`80 240/9^x`
`9^x xx 80 = 240`
`9^x = 240/80`
`3^(2x )= 3`
`3^(2x )= 3^1`
By equating the exponents we get
`2x = 1`
`x= 1/2`
`x= 0.5`
APPEARS IN
RELATED QUESTIONS
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
Prove that:
`(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
Find:-
`32^(2/5)`
Simplify:
`7^(1/2) . 8^(1/2)`