Advertisements
Advertisements
Question
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
Solution
We have to simplify the following, assuming that x, y, z are positive real numbers
Given `root5(243x^10y^5z^10)`
`=(243xx x^10xxy^5xxz^10)^(1/5)`
`=(243)^(1/5)xx (x^10)^(1/5)xx(y^5)^(1/5)xx(z^10)^(1/5)`
`=(3^5)^(1/5)xx x^(10xx1/5)xxy^(5xx1/5)xxz^(10xx1/5)`
`=3xx x^2xxyxxz^2`
`=3x^2yz^2`
APPEARS IN
RELATED QUESTIONS
If a = 3 and b = -2, find the values of :
ab + ba
If `1176=2^a3^b7^c,` find a, b and c.
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
If `27^x=9/3^x,` find x.
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=