Advertisements
Advertisements
Question
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
Solution
We have to prove that `sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
Let x = `sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)`
`=sqrt(1/2^2)+((0.01xx100)/(1xx100))^(-1/2)-(3^3)^(2/3)`
`=1/2+1/(100)^(-1/2)-3^(3xx2/3)`
`=1/2+1/(1/100^(1/2))-3^2`
`=1/2+1/(1/(10xx10)^(1/2))-3^2`
`=1/2+1/(1/10^(2xx1/2))-3^2`
`=1/2+1/(1/10)-3^2`
`=1/2+1xx10/1-3xx3`
`=1/2+10-9`
`=3/2`
Hence, `sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
APPEARS IN
RELATED QUESTIONS
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to