Advertisements
Advertisements
Question
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
Options
amn
a
am/n
1
Solution
Find the value of . `{msqrt nsqrta}^(mn)`
So,
`{msqrt nsqrta}^(mn)`= `{msqrt (a^(1/n)} }^(mn)`
= `{a^(1/n xx 1/m)}^(mn)`
= `{a^(1/n xx 1/m xxm xxn)}`
⇒ `{msqrt nsqrta}^(mn) = {a^(1/n xx 1/m xxm xxn)} `
⇒ `{msqrt nsqrta}^(mn) = a `
APPEARS IN
RELATED QUESTIONS
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
Solve the following equation for x:
`4^(2x)=1/32`
If `1176=2^a3^b7^c,` find a, b and c.
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Simplify:
`(16^(-1/5))^(5/2)`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
The positive square root of \[7 + \sqrt{48}\] is
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]