Advertisements
Advertisements
Question
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
Options
5
125
1/5
-125
Solution
We have to find the value of. `{2-3(2-3)^3}^3`So,
`{2-3 (2-3)^3}^3 = {2-3(-1)^3}^3`
` {2(-3 xx -1}^3`
`{2+3}^3`
`=5^3 = 125`
The value of `{2-3(2-3)^3}^3` is 125
Hence the correct choice is b.
APPEARS IN
RELATED QUESTIONS
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Solve the following equation for x:
`2^(3x-7)=256`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
If x-2 = 64, then x1/3+x0 =
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then