Advertisements
Advertisements
Question
Solve the following equation for x:
`2^(3x-7)=256`
Solution
`2^(3x-7)=256`
`rArr2^(3x-7)=2^8`
⇒ 3x - 7 = 8
⇒ 3x = 8 + 7
⇒ 3x = 15
⇒ x = 15/3
⇒ x = 5
APPEARS IN
RELATED QUESTIONS
Simplify the following
`(2x^-2y^3)^3`
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
Simplify:
`root3((343)^-2)`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
If x is a positive real number and x2 = 2, then x3 =
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
The value of \[\sqrt{3 - 2\sqrt{2}}\] is