Advertisements
Advertisements
Question
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
Options
101
99
98
102
Solution
Given that `x= (sqrt3 - sqrt2) /(sqrt3 + sqrt2)` and `y = (sqrt3 + sqrt2) /(sqrt3 - sqrt2)`.
We need to find `x^2 +xy +y^2`
Now we will rationalize x. We know that rationalization factor for `sqrt3+sqrt2` is `sqrt3-sqrt2` `sqrt3+sqrt2`. We will multiply numerator and denominator of the given expression `x= (sqrt3 - sqrt2) /(sqrt3 + sqrt2)` by `sqrt3 - sqrt2`, to get
`x = `x= (sqrt3 - sqrt2) /(sqrt3 + sqrt2) xx (sqrt3 - sqrt2) /(sqrt3 - sqrt2)`
`= ((sqrt3)^2 +(sqrt2)^2 - 2 xx sqrt3 xx sqrt2)/((sqrt3)^2 - (sqrt2)^2)`
`= (3+2-2sqrt6)/(3-2)`
` = 5-2sqrt6`
Similarly, we can rationalize y. We know that rationalization factor for `sqrt3 - sqrt2` is `sqrt3 +sqrt2`. We will multiply numerator and denominator of the given expression `(sqrt3 +sqrt2) /(sqrt3 - sqrt2)`by `sqrt3 + sqrt2`, to get
`y = (sqrt3 + sqrt2) /(sqrt3 - sqrt2) xx (sqrt3 + sqrt2) /(sqrt3 +sqrt2)`
`= ((sqrt3)^2 +(sqrt2)^2 +2 xx sqrt3 xx sqrt2)/((sqrt3)^2 - (sqrt2)^2)`
`= (3+2-2sqrt6)/(3-2)`
` = 5-2sqrt6`
Therefore,
`x^2 + xy + y ^ 2 = ( 5 - 2 sqrt6 )^2+ (5-2sqrt6) (5 + 2 sqrt6)+ (5+2sqrt6)^2`
` = 5^2 +(2sqrt6 )^2 - 2 xx 5 xx 2 sqrt6 +5^2 - (2sqrt6 )^2+ 5^2 + (2sqrt6)^2 + 2xx 5 xx 2sqrt6`
` = 25 +24 -20sqrt6 +25 - 24 +25 +24 +20sqrt6`
` = 49 + 1+ 49`
` = 99`
APPEARS IN
RELATED QUESTIONS
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
If o <y <x, which statement must be true?
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is