Advertisements
Advertisements
Question
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
Solution
We have to find the value of L = `(x^a/x^a)^(a+b) xx (x^b/x^c)^(b+c) xx(x^c/x^a)^(c+a) `
`L=(x^(a(a+b))/(x^(b(a+b)))) xx (x^(b(b+c))/(x^(c(b+c)))) xx (x^(c(c+b))/(x^(a(c+a)))) `
`= (x^(a^2+ab))/ (x^(ba+b^2)) xx (x^(b^2+bc))/ (x^(bc+c^2)) xx (x^(c^2+ca))/ (x^(ac+b^2))`
By using rational exponents, `a^mxx a^n = a^(m+n)` we get
`L=(x^(a^2+ab+b^2+bc+c^2+ca))/(x^(ab+b^2+bc+c^2+ac+a^2))`
By using rational exponents `a^m/a^n= a^(m-n)` we get
`L = x^((a^2+ab+b^2+bc+c^2+ca) -(ab+b^2+bc+c^2+ac+a^2))`
`=x^((a^2+ab+b^2+bc+c^2+ca) -(ab+b^2+bc+c^2+ac+a^2))`
`=x^0`
By definition we can write `x^0` as 1
Hence the value of expression is 1.
APPEARS IN
RELATED QUESTIONS
Simplify the following
`(4ab^2(-5ab^3))/(10a^2b^2)`
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Simplify:
`(0.001)^(1/3)`
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
Find:-
`125^(1/3)`