Advertisements
Advertisements
प्रश्न
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
उत्तर
We have to find the value of L = `(x^a/x^a)^(a+b) xx (x^b/x^c)^(b+c) xx(x^c/x^a)^(c+a) `
`L=(x^(a(a+b))/(x^(b(a+b)))) xx (x^(b(b+c))/(x^(c(b+c)))) xx (x^(c(c+b))/(x^(a(c+a)))) `
`= (x^(a^2+ab))/ (x^(ba+b^2)) xx (x^(b^2+bc))/ (x^(bc+c^2)) xx (x^(c^2+ca))/ (x^(ac+b^2))`
By using rational exponents, `a^mxx a^n = a^(m+n)` we get
`L=(x^(a^2+ab+b^2+bc+c^2+ca))/(x^(ab+b^2+bc+c^2+ac+a^2))`
By using rational exponents `a^m/a^n= a^(m-n)` we get
`L = x^((a^2+ab+b^2+bc+c^2+ca) -(ab+b^2+bc+c^2+ac+a^2))`
`=x^((a^2+ab+b^2+bc+c^2+ca) -(ab+b^2+bc+c^2+ac+a^2))`
`=x^0`
By definition we can write `x^0` as 1
Hence the value of expression is 1.
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
State the product law of exponents.
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
Which one of the following is not equal to \[\left( \sqrt[3]{8} \right)^{- 1/2} ?\]
(256)0.16 × (256)0.09
When simplified \[(256) {}^{- ( 4^{- 3/2} )}\] is
Which of the following is equal to x?