Advertisements
Advertisements
प्रश्न
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
उत्तर
We have to simplify the following, assuming that x, y, z are positive real numbers
Given `root5(243x^10y^5z^10)`
`=(243xx x^10xxy^5xxz^10)^(1/5)`
`=(243)^(1/5)xx (x^10)^(1/5)xx(y^5)^(1/5)xx(z^10)^(1/5)`
`=(3^5)^(1/5)xx x^(10xx1/5)xxy^(5xx1/5)xxz^(10xx1/5)`
`=3xx x^2xxyxxz^2`
`=3x^2yz^2`
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is