Advertisements
Advertisements
प्रश्न
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
उत्तर
We have to prove `(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=1^-2/4^-2-3xx2^(3xx2/3)xx4^0+3^(2xx-1/2)/2^(4xx-1/2)`
`=1/2^(2xx-2)-3xx2^2xx4^0+3^-1/2^-2`
`=1/2^-4-3xx2^2xx4^0+3^-1/2^-2`
`=1/(1/2^4)-3xx2^2xx4^0+(1/3)/(1/2^2)`
`=1xx2^4/1-3xx2^2xx1+1/3xx2^2/1`
`=16/1-12/1+4/3`
`=16/3`
Hence, `(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
If a = 3 and b = -2, find the values of :
aa + bb
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
If `27^x=9/3^x,` find x.
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
The value of \[\sqrt{3 - 2\sqrt{2}}\] is