Advertisements
Advertisements
प्रश्न
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
उत्तर
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
`=(4xx10^7xx6xx10^-5)/(8xx10^4)`
`=(24xx10^(7+(-5)))/(8xx10^4)`
`=(24xx10^2)/(8xx10^4)`
`=(24xx10^2xx10^-4)/8`
`=3xx10^(2+(-4))`
`=3xx10^-2`
`=3/10^2`
`=3/100`
APPEARS IN
संबंधित प्रश्न
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
The product of the square root of x with the cube root of x is
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
The value of \[\sqrt{5 + 2\sqrt{6}}\] is
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to