Advertisements
Advertisements
प्रश्न
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
उत्तर
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
`=(4xx10^7xx6xx10^-5)/(8xx10^4)`
`=(24xx10^(7+(-5)))/(8xx10^4)`
`=(24xx10^2)/(8xx10^4)`
`=(24xx10^2xx10^-4)/8`
`=3xx10^(2+(-4))`
`=3xx10^-2`
`=3/10^2`
`=3/100`
APPEARS IN
संबंधित प्रश्न
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
If 24 × 42 =16x, then find the value of x.
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]