Advertisements
Advertisements
प्रश्न
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
उत्तर
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
`=(x^((a+b)(a-b))/x^(c(a-b)))(x^((b+c)(b-c))/x^(a(b-c)))(x^((c+a)(c-a))/x^(b(c-a)))`
`=(x^(a^2-b^2)/x^(ca-bc))(x^(b^2-c^2)/x^(ab-ac))(x^(c^2-a^2)/x^(bc-ab))`
`=x^(a^2-b^2+b^2-c^2+c^2-a^2)/x^(ca-bc+ab-ac+bc-ab)`
`=x^0/x^0`
= 1
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Simplify the following
`(2x^-2y^3)^3`
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
Simplify:
`root5((32)^-3)`
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
The seventh root of x divided by the eighth root of x is
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to