Advertisements
Advertisements
प्रश्न
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
उत्तर
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
`=(x^l/x^m)^(1/(lm))xx(x^m/x^n)^(1/(mn))xx(x^n/x^l)^(1/(nl))`
`=(x^(l-m))^(1/ml)xx(x^(m-n))^(1/mn)xx(x^(n-l))^(1/)nl`
`=x^((l-m)/(ml))xx x^((m-n)/(mn))xx x^((n-l)/(nl))`
`=x^((l-m)/(ml)+(m-n)/(mn)+(n-l)/(nl))`
`=x^((ln-mn+lm-nl+nm-lm)/(nml))`
`=x^0`
= 1
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
Solve the following equation for x:
`2^(3x-7)=256`
Simplify:
`root3((343)^-2)`
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
The positive square root of \[7 + \sqrt{48}\] is