Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
उत्तर
`2^(x+1)=4^(x-3)`
`rArr2^(x+1)=(2^2)^(x-3)`
`rArr2^(x+1)=(2^(2x-6))`
⇒ x + 1 = 2x - 6
⇒ 2x - x = 1 + 6
⇒ x = 7
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
ab + ba
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
The seventh root of x divided by the eighth root of x is
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
Find:-
`125^((-1)/3)`
Simplify:-
`(1/3^3)^7`