Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
`7^(2x+3)=1`
उत्तर
`7^(2x+3)=1`
`rArr7^(2x+3)=7^0`
⇒ 2x + 3 = 0
⇒ 2x = -3
`rArrx=-3/2`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(4ab^2(-5ab^3))/(10a^2b^2)`
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
If `1176=2^a3^b7^c,` find a, b and c.
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
(256)0.16 × (256)0.09