Advertisements
Advertisements
प्रश्न
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
उत्तर
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
LHS = `(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))`
`=(x)^(1/(a-b)xx1/(a-c))(x)^(1/(b-c)xx1/(b-a))(x)^(1/(c-a)xx1/(c-b))`
`=(x)^(1/(a-b)xx1/(a-c)+1/(b-c)xx1/(b-a)+1/(c-a)xx1/(c-b))`
`=(x)^(((b-c)-(a-c)+(a-b))/((a-b)(a-c)(b-c)))`
`=x^0`
= 1
= RHS
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
The square root of 64 divided by the cube root of 64 is
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
Find:-
`125^(1/3)`