Advertisements
Advertisements
प्रश्न
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
विकल्प
xy
x+y
\[\frac{xy}{y + x}\]
\[\frac{x + y}{xy}\]
उत्तर
We have to simplify `(x^-1 + y ^-1)^-1`
So,
` `(x^-1 + y ^-1)^-1 = (1/x +1/y)^-1`
= `1/ (1/x +1/y)`
`= 1/((1xx x) /(1 xx y) + (1xx x) /(1xx y))`
`= 1/(y/(xy) + x/(xy))`
`(x^-1 + y^-1)^-1 = 1/((y+x)/(xy))`
`= (xy)/(y+x)`
The value of ` (x^-1 + y ^-1)^-1` is `(xy)/(y+x)`
APPEARS IN
संबंधित प्रश्न
If `5^(3x)=125` and `10^y=0.001,` find x and y.
If 24 × 42 =16x, then find the value of x.
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
If 9x+2 = 240 + 9x, then x =
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`