Advertisements
Advertisements
प्रश्न
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
उत्तर
We have to find the value of . `(1/9) ^((-1)/2) xx (64) ^((-1)/3`So,
`(1/9) ^((-1)/2) xx (64) ^((-1)/3` = `(1/9) ^((-1)/2) xx (64) ^((-1)/3`,
`= (1/3) ^((-1)/2) xx (4^3) ^((-1)/3) `
`= (1/3^(2 xx (-1)/2)) xx (4^(3 xx (-1)/3))`
`= (1/3^(2 xx (-1)/2)) xx (4^(3 xx (-1)/3))`
`(1/9) ^((-1)/2) xx (64) ^((-1)/3 ) = 1/3^(-1) xx 4^(-1) `
`=1/(1/3) xx 1/4`
`= 1xx 3/1 xx 1/4`
`= 3/4`
Hence the value of the value of `(1/9)^(-1/2) xx (64)^(-1/3)` is `3/4`.
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
If `1176=2^a3^b7^c,` find a, b and c.
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^-4/y^-10)^(5/4)`
Simplify:
`(16^(-1/5))^(5/2)`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
The simplest rationalising factor of \[\sqrt[3]{500}\] is