Advertisements
Advertisements
Question
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
Solution
We have to find the value of . `(1/9) ^((-1)/2) xx (64) ^((-1)/3`So,
`(1/9) ^((-1)/2) xx (64) ^((-1)/3` = `(1/9) ^((-1)/2) xx (64) ^((-1)/3`,
`= (1/3) ^((-1)/2) xx (4^3) ^((-1)/3) `
`= (1/3^(2 xx (-1)/2)) xx (4^(3 xx (-1)/3))`
`= (1/3^(2 xx (-1)/2)) xx (4^(3 xx (-1)/3))`
`(1/9) ^((-1)/2) xx (64) ^((-1)/3 ) = 1/3^(-1) xx 4^(-1) `
`=1/(1/3) xx 1/4`
`= 1xx 3/1 xx 1/4`
`= 3/4`
Hence the value of the value of `(1/9)^(-1/2) xx (64)^(-1/3)` is `3/4`.
APPEARS IN
RELATED QUESTIONS
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
Solve the following equation:
`3^(x-1)xx5^(2y-3)=225`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
If (16)2x+3 =(64)x+3, then 42x-2 =
Find:-
`125^(1/3)`
Simplify:
`11^(1/2)/11^(1/4)`