Advertisements
Advertisements
प्रश्न
Write the value of \[\sqrt[3]{125 \times 27}\].
उत्तर
We have to find the value of \[\sqrt[3]{125 \times 27}\] So, \[\sqrt[3]{125 \times 27} = \sqrt[3]{5^3 \times 3^3} = 5 \times 3 = 15\]
Hence the value of the value of `3sqrt(125 xx 27)` is 15.
APPEARS IN
संबंधित प्रश्न
If 49392 = a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
Simplify:
`7^(1/2) . 8^(1/2)`