हिंदी

If A, B, C Are Positive Real Numbers, Then √ a − 1 B × √ B − 1 C × √ C − 1 a is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c are positive real numbers, then  \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to

विकल्प

  • 1

  • abc

  • \[\sqrt{abc}\]

  • \[\frac{1}{abc}\]

MCQ

उत्तर

We have to find the value of  `sqrt(a^-1b)xx sqrt (b^-1c) xx sqrt(c^-1 a)` when a, b, c are positive real numbers.

So,

`sqrt(a^-1b)xx sqrt (b^-1c) xx sqrt(c^-1 a) =sqrt(1/a xxb)xx sqrt(1/b xx c) xx sqrt(1/c xx a)` 

`sqrt(b/a) xx sqrt (c/b) xx sqrt(a/c)`

Taking square root as common we get

\[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a} = \sqrt{\frac{b}{a} \times \frac{c}{b} \times \frac{a}{c}}\]

\[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a} = 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Exponents of Real Numbers - Exercise 2.4 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 2 Exponents of Real Numbers
Exercise 2.4 | Q 14 | पृष्ठ ३०

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×