Advertisements
Advertisements
प्रश्न
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
उत्तर
`3^(2x+4)+1=2.3^(x+2)`
`rArr(3^(x+2))^2-2.3^(x+2)+1=0`
`rArr(3^(x+2)-1)^2=0`
`rArr3^(x+2)-1=0`
`rArr3^(x+2)=1`
`rArr3^(x+2)=3^0`
⇒ x + 2 = 0
⇒ x = -2
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Find:-
`9^(3/2)`
Simplify:-
`2^(2/3). 2^(1/5)`
Simplify the following
`(2x^-2y^3)^3`
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Write the value of \[\sqrt[3]{125 \times 27}\].
The square root of 64 divided by the cube root of 64 is
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=