Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
उत्तर
Given `(root3 4)^(2x+1/2)=1/32`
`(2^2)^((1/3)((4x+1)/2))=(1/2)^5`
`rArr2^((4x+1)/3)=2^-5`
On comparing we get,
`(4x+1)/3=-5`
⇒ 4x + 1 = -5 x 3
⇒ 4x + 1 = -15
⇒ 4x = -15 - 1
⇒ 4x = -16
`rArrx=-16/4`
⇒ x = -4
Hence, the value of x = -4.
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
State the quotient law of exponents.
(256)0.16 × (256)0.09
If 9x+2 = 240 + 9x, then x =
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
The positive square root of \[7 + \sqrt{48}\] is
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`