Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
उत्तर
Given `(root3 4)^(2x+1/2)=1/32`
`(2^2)^((1/3)((4x+1)/2))=(1/2)^5`
`rArr2^((4x+1)/3)=2^-5`
On comparing we get,
`(4x+1)/3=-5`
⇒ 4x + 1 = -5 x 3
⇒ 4x + 1 = -15
⇒ 4x = -15 - 1
⇒ 4x = -16
`rArrx=-16/4`
⇒ x = -4
Hence, the value of x = -4.
APPEARS IN
संबंधित प्रश्न
Find:-
`9^(3/2)`
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
The seventh root of x divided by the eighth root of x is
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
Which of the following is equal to x?