Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`5^(2x+3)=1`
उत्तर
Given `5^(2x+3)=1`
`5^(2x+3)=5^0`
On equating the exponents we get
⇒ 2x + 3 = 0
⇒ 2x = -3
`rArr x = (-3)/2`
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Solve the following equation for x:
`2^(3x-7)=256`
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to