Advertisements
Advertisements
प्रश्न
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
पर्याय
amn
a
am/n
1
उत्तर
Find the value of . `{msqrt nsqrta}^(mn)`
So,
`{msqrt nsqrta}^(mn)`= `{msqrt (a^(1/n)} }^(mn)`
= `{a^(1/n xx 1/m)}^(mn)`
= `{a^(1/n xx 1/m xxm xxn)}`
⇒ `{msqrt nsqrta}^(mn) = {a^(1/n xx 1/m xxm xxn)} `
⇒ `{msqrt nsqrta}^(mn) = a `
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
Simplify:
`(16^(-1/5))^(5/2)`
Prove that:
`(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
Write the value of \[\sqrt[3]{125 \times 27}\].
If o <y <x, which statement must be true?
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is
Find:-
`32^(2/5)`