Advertisements
Advertisements
प्रश्न
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
उत्तर
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
LHS = `(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)`
`=(a^(x+1-y-1))^(x+y)(a^(y+2-z-2))^(y+z)(a^(z+3-x-3))^(z+x)`
`=(a^(x-y))^(x+y)(a^(y-z))^(y+z)(a^(z-x))^(z+x)`
`=(a^((x-y)(x+y)))(a^((y-z)(y+z)))(a^((z-x)(z+x)))`
`=(a^(x^2-y^2))(a^(y^2-z^2))(a^(z^2-x^2))`
`=a^(x^2-y^2+y^2-z^2+z^2-x^2)`
`=a^0`
= 1
= RHS
APPEARS IN
संबंधित प्रश्न
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Simplify:
`(0.001)^(1/3)`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
If 102y = 25, then 10-y equals
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`