Advertisements
Advertisements
प्रश्न
If 102y = 25, then 10-y equals
पर्याय
- \[- \frac{1}{5}\]
- \[\frac{1}{50}\]
- \[\frac{1}{625}\]
- \[\frac{1}{5}\]
उत्तर
We have to find the value of `10^-y`
Given that, `10^(2y) = 25` therefore,
`10^(2y) = 25`
`(10^y)^2 = 5^2`
`(10^y)^(2 xx 1/2)= 5^(2 xx 1/2)`
`(10^y)^(2 xx 1/2)= 5^(2 xx 1/2)`
`10^y/1 = 5/1`
`1/5 =1/10^y`
`1/5 =10^-y`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
If `1176=2^a3^b7^c,` find a, b and c.
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
If x-2 = 64, then x1/3+x0 =
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
Find:-
`32^(1/5)`
Which of the following is equal to x?