Advertisements
Advertisements
प्रश्न
If 102y = 25, then 10-y equals
विकल्प
- \[- \frac{1}{5}\]
- \[\frac{1}{50}\]
- \[\frac{1}{625}\]
- \[\frac{1}{5}\]
उत्तर
We have to find the value of `10^-y`
Given that, `10^(2y) = 25` therefore,
`10^(2y) = 25`
`(10^y)^2 = 5^2`
`(10^y)^(2 xx 1/2)= 5^(2 xx 1/2)`
`(10^y)^(2 xx 1/2)= 5^(2 xx 1/2)`
`10^y/1 = 5/1`
`1/5 =1/10^y`
`1/5 =10^-y`
APPEARS IN
संबंधित प्रश्न
Find:-
`9^(3/2)`
If a = 3 and b = -2, find the values of :
ab + ba
Solve the following equation for x:
`7^(2x+3)=1`
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Find the value of x in the following:
`(3/5)^x(5/3)^(2x)=125/27`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]