Advertisements
Advertisements
प्रश्न
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
उत्तर
We have to prove that `(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Let x = `(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)`
`=2^(6xx(-2)/3)/5^(3xx(-2)/3)+1/(2^(8xx1/4)/5^(4xx1/4))+sqrt(5xx5)/root3 (4xx4xx4)`
`=2^-4/5^-2+1/(2^2/5)+5/4`
`=(1/2^4)/(1/5^2)+5/2^2+5/4`
`rArrx=1/16xx25/1+5/4+5/4=65/16`
By taking least common factor we get
`x=(25+20+20)/16=65/16`
Hence, `(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Simplify the following
`(a^(3n-9))^6/(a^(2n-4))`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Find the value of x in the following:
`5^(2x+3)=1`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
Which one of the following is not equal to \[\left( \sqrt[3]{8} \right)^{- 1/2} ?\]
(256)0.16 × (256)0.09
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.