Advertisements
Advertisements
प्रश्न
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
उत्तर
We have to simplify the following, assuming that x, y, z are positive real numbers
Given `(sqrt2/sqrt3)^5(6/7)^2`
`=(sqrt2/sqrt3)^(2+2+1)(6/7)^2`
`=(sqrt2/sqrt3)^2xx(sqrt2/sqrt3)^2xx(sqrt2/sqrt3)^1xx(6/7)^2`
`=(2/3)xx(2/3)xx(sqrt2/sqrt3)^1xx(6/7)^2`
`=(16sqrt2)/(49sqrt3)`
`=sqrt(512/7203)`
`=(512/7203)^(1/2)`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
If (23)2 = 4x, then 3x =
If x-2 = 64, then x1/3+x0 =
If x is a positive real number and x2 = 2, then x3 =
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`