Advertisements
Advertisements
प्रश्न
If x is a positive real number and x2 = 2, then x3 =
विकल्प
\[\sqrt{2}\]
2\[\sqrt{2}\]
3\[\sqrt{2}\]
4
उत्तर
We have to find `x^3`provided `x^2 = 2`. So,
By raising both sides to the power `1/2`
`x^(2 xx 1/2) = 2^(1/2)`
`x^(2 xx 1/2) = sqrt2`
`x= sqrt2`
By substituting `x= sqrt2` in `x^2` we get
`x^2 = (sqrt2)^3`
= `sqrt2 xx sqrt2 xxsqrt2`
= `2sqrt2`
The value of `x^2`is `2sqrt2`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(4ab^2(-5ab^3))/(10a^2b^2)`
If a = 3 and b = -2, find the values of :
aa + bb
If a = 3 and b = -2, find the values of :
ab + ba
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^-4/y^-10)^(5/4)`
Simplify:
`(0.001)^(1/3)`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
Simplify:
`11^(1/2)/11^(1/4)`