Advertisements
Advertisements
प्रश्न
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?
विकल्प
`31/2`
`33/2`
16
`257/16`
उत्तर
`bb(33/2)`
Explanation:
g = `t^(2/3) + 4t^(-1/2)`
= `(64)^(2/3) + 4(64)^(-1/2)`
= `[(64)^(1/3)]^3 + 4 (1/64)^(1/2)`
= `4^2 + 4(1/8)`
= `16 + 1/2 = 38/2`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(2x^-2y^3)^3`
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
Which one of the following is not equal to \[\left( \sqrt[3]{8} \right)^{- 1/2} ?\]
When simplified \[(256) {}^{- ( 4^{- 3/2} )}\] is
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
Find:-
`32^(2/5)`