Advertisements
Advertisements
प्रश्न
Find:-
`32^(2/5)`
योग
उत्तर
We can write the given expression as follows
⇒ `32^(2/5) = (2^5)^(2/5)`
On simplifying
⇒ `32^(2/5) = 2^(5 xx 2/5)`
⇒ `32^(2/5) = 2^2`
∴ `32^(2/5) = 4`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
If (16)2x+3 =(64)x+3, then 42x-2 =
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
Find:-
`32^(1/5)`
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`