Advertisements
Advertisements
प्रश्न
If (16)2x+3 =(64)x+3, then 42x-2 =
विकल्प
64
256
32
512
उत्तर
We have to find the value of`4^(2x -2)`provided `(16)^(2x +3) = (64)^(x+3)`
So,
`(16)^(2x +3) = (64)^(x+3)`
`(2^4)^(2x +3) = (2^6)^(x+3)`
`2^(8x +12) = 2^(6x+18)`
Equating the power of exponents we get
`8x +12 = 6x +18`
`8x - 6x = 18 -12`
`2x = 6`
`x = 6/2`
`x=3`
The value of `4^(2x-2)` is
` = 4^(2x-2)`
`4^(2 xx 3- 2)`
`4^(6-2)`
`4^4`
= 256
APPEARS IN
संबंधित प्रश्न
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
If x is a positive real number and x2 = 2, then x3 =
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
The simplest rationalising factor of \[\sqrt[3]{500}\] is
Find:-
`32^(1/5)`