Advertisements
Advertisements
प्रश्न
The simplest rationalising factor of \[\sqrt[3]{500}\] is
विकल्प
\[\sqrt[3]{2}\]
\[\sqrt[3]{5}\]
\[\sqrt{3}\]
none of these
उत्तर
Given that: `3sqrt500` To find simplest rationalizing factor of the given expression we will factorize it as
`3sqrt500 = 3sqrt(125xx 4)`
`= 3sqrt(5xx5xx5xx 4)`
`= 3sqrt((5))^3 xx 3sqrt4`
` = 5 3sqrt4`
The rationalizing factor of `5 3sqrt4`is, `3sqrt2`since when we multiply given expression with this factor we get rid of irrational term.
Therefore, rationalizing factor of the given expression is `3sqrt2`
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
ab + ba
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
If 102y = 25, then 10-y equals
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.