Advertisements
Advertisements
प्रश्न
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
विकल्प
2
- \[\frac{1}{4}\]
9
- \[\frac{1}{8}\]
उत्तर
Given : `2^(m+n)/2^(n-m) = 16`
\[\frac{3^p}{3^n} = 81\] and and `a-2^(1/10)`
To find : `(a^(2m+n-p))/((a^(m-2n+2p))^-1)`
Find : `2^(m+n)/2^(n-m) = 16`
By using rational components `a^m/a^n = a^(m-n)`We get
`2^(m+n-n+m) = 16`
`2^(m+n-n+m) = 16`
`2^(2m) = 2^4`
By equating rational exponents we get
`2m = 4`
`m = 4/2`
`m=2`
Now, `(a(2m+n-p))/((a^(m-2n+2p))^-1`
\[\left( a^{2m + n - p} \right) . \left( a^{m - 2n + 2p} \right)\] we get
\[= a^{2m + n - p + m - 2n + 2p} \]
\[ = a^{3m - n + p} \]
\[\text { Now putting value of a } = 2^\frac{1}{10}\text { we get,} \]
\[ = 2^\frac{3m - n + p}{10} \]
\[ = 2^\frac{6 - n + p}{10}\]
Also,
\[\frac{3^p}{3^n} = 81\]
\[3^{p - n} = 3^4 \]
On comparing LHS and RHS we get,p - n = 4.
Now,
`(a^(2m+n-p))/(a^(m-2n+2p))^-1`= a3m - n + p
\[= 2^\frac{6 + (p - n)}{10} \]
\[ = 2^\frac{6 + 4}{10} \]
\[ = 2^\frac{10}{10} = 2^1 \]
\[ = 2\]
So, option (a) is the correct answer.
APPEARS IN
संबंधित प्रश्न
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
`(2/3)^x (3/2)^(2x)=81/16 `then x =
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`