Advertisements
Advertisements
प्रश्न
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
विकल्प
\[\frac{5}{3}\]
\[- \frac{5}{3}\]
\[\frac{3}{5}\]
\[- \frac{3}{5}\]
उत्तर
We have to simplify `(5^(n+2) - 6xx 5^(n+1))/(13 xx 5^n - 2 xx5^(n+1))`
Taking `5^2` as a common factor we get
`(5^(n+2) - 6xx 5^(n+1))/(13 xx 5^n - 2 xx5^(n+1)) = (5^n(5^2 -6 xx 5^1))/(5^n(13-2 xx 5^1))`
`= (5^n(25-30))/(5^n(13-10))`
` = (-5)/3`
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`4^(2x)=1/32`
Simplify:
`root5((32)^-3)`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
Write the value of \[\sqrt[3]{125 \times 27}\].
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
If 9x+2 = 240 + 9x, then x =
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
Find:-
`16^(3/4)`
Find:-
`125^((-1)/3)`