Advertisements
Advertisements
प्रश्न
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
विकल्प
- \[\frac{1}{2}\]
2
4
\[- \frac{1}{4}\]
उत्तर
We have to find the value of \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] provided `2^-m xx 1/2^m = 1/4`
Consider,
`2^-m xx 1/2^m = 1/4`
=`1/2^m xx 1/2^m`
= `1/(2^m xx 2^m)`
`= 1/2^(2m) = 1/2^2`
Equating the power of exponents we get
`2m = 2`
`m=2/2`
`m=1`
By substituting \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] we get
\[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] = \[\frac{1}{14}\left\{ ( 4^m )^{1× 1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\]
`= 1/14 {2^(2xx1/2)+ 1/5^-1}`
`= 1/14 {2^(2xx1/2)+ 1/(1/5)}`
`= 1/14 {2 + 1 xx 5/1}`
\[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] = `1/14 {2+5}`
=`1/14 (7)`
`= 1/14 xx 7`
= `1/2`
APPEARS IN
संबंधित प्रश्न
Simplify:
`(16^(-1/5))^(5/2)`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
The product of the square root of x with the cube root of x is
If (23)2 = 4x, then 3x =
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]