Advertisements
Advertisements
प्रश्न
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
उत्तर
Let ax = by = cz = k
So, `a=k^(1/x),` `b=k^(1/y),` c=k^(1/z)
Thus,
`b^2 = ac`
`rArr(k^(1/y))^2=(k^(1/x))(k^(1/z))`
`rArrk^(2/y)=k^(1/x+1/z)`
`rArr2/y=1/x+1/z`
`rArr2/y=(z+x)/(xz)`
`rArr2xx(zx)/(z+x)=y`
`rArry=(2zx)/(z+x)`
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Simplify:
`(16^(-1/5))^(5/2)`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
State the quotient law of exponents.
State the power law of exponents.
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to