Advertisements
Advertisements
प्रश्न
State the power law of exponents.
उत्तर
The "power rule" tell us that to raise a power to a power, just multiply the exponents.
If a is any real number and m, n are positive integers, then `(a^m)^n = a^(mn)`
We have,
`(a^m)^n = a^m xx a^m xx a^m xx ....n ` factors
`(a^m)^n = (a xx a xx a xx... m ) xx (a xx a xx a xx... m ).... n `factors
`(a^m)^n =(a xx a xx a xx... m )`
Hence, `(a^m)^n = a^(mn)`
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
(a + b)ab
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
Find the value of x in the following:
`5^(2x+3)=1`
If x-2 = 64, then x1/3+x0 =
The positive square root of \[7 + \sqrt{48}\] is
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`