Advertisements
Advertisements
प्रश्न
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`
उत्तर
`(1^3 + 2^3 + 3^3)^(1/2) = (1 + 8 + 27)^(1/2)` ...[∵ (am)n = amn]
= `(36)^(1/2)`
= `(6^2)^(1/2)`
= `6^(2 xx 1/2)`
= 6
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(2x^-2y^3)^3`
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]