Advertisements
Advertisements
Question
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`
Simplify
Solution
`(1^3 + 2^3 + 3^3)^(1/2) = (1 + 8 + 27)^(1/2)` ...[∵ (am)n = amn]
= `(36)^(1/2)`
= `(6^2)^(1/2)`
= `6^(2 xx 1/2)`
= 6
shaalaa.com
Is there an error in this question or solution?
Chapter 1: Number Systems - Exercise 1.3 [Page 11]
APPEARS IN
RELATED QUESTIONS
Solve the following equation for x:
`7^(2x+3)=1`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
`(2/3)^x (3/2)^(2x)=81/16 `then x =
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then
The positive square root of \[7 + \sqrt{48}\] is