Advertisements
Advertisements
Question
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
Solution
We have to write `(625)^(-1/4)`in decimal form. So,
\[\left( 625 \right)^\frac{- 1}{4} = \frac{1}{{625}^\frac{1}{4}}\]
\[ = \left( \frac{1}{\left( 5^4 \right)} \right)^\frac{1}{4}\]
`(625)^(-1/4) = (1 /5)^(4 xx 1/4)`
`=1/5`
= 0.2
Hence the decimal form of `(625)^(-1/4)` is 0.2
APPEARS IN
RELATED QUESTIONS
If 49392 = a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
State the quotient law of exponents.
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
If x-2 = 64, then x1/3+x0 =
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
The simplest rationalising factor of \[\sqrt[3]{500}\] is
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is
Find:-
`32^(1/5)`
Find:-
`125^(1/3)`