Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
उत्तर
Given `(sqrt(3/5))^(x+1)=125/27`
`(sqrt(3/5))^(x+1)=(5/3)^3`
`rArr(3/5)^((x+1)/2)=(3/5)^-3`
On comparing we get,
`(x+1)/2=-3`
⇒ x + 1 = -3 x 2
⇒ x + 1 = -6
⇒ x = -6 - 1
⇒ x = -7
Hence, the value of x = -7.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
Solve the following equation for x:
`7^(2x+3)=1`
Simplify:
`(0.001)^(1/3)`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
Find the value of x in the following:
`5^(2x+3)=1`
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then
Simplify:
`11^(1/2)/11^(1/4)`